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Abstract 

Using high-frequency data from the New York Stock Exchange and NASDAQ over the 

years 2016-2017, we assess the manipulability of equity shares by considering three 

specific manipulation vectors: order book shape-, cross-asset, and 

across-exchange-arbitrage manipulability.  Stability of these estimates is also 

considered.  Orderbook shape has a significant effect on future price for a wide swath of 

assets, while the possibility of cross-asset and across exchange manipulability vary more 

widely across assets.  These results suggest that at frequencies from 10 seconds to 10 

minutes manipulability of the form studied here is a substantive problem for a wide 

swath of publicly traded assets.  

 

1. Introduction 

 

The previous two decades of asset market innovation have introduced substantial 

changes to the way markets operate and how they are regulated.  The introduction of 

automated trading has increased the speed with which orders are submitted and 

cancelled, trades are executed, and confirmations are sent.  While the introduction of 

automated trading strategies may seem to increase the complexity inherent in the 

movements in market prices and order books more generally, the behavior of trading 
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algorithms is not random and is often motivated by a very limited set of objectives.  The 

relatively stable set of objectives that the authors of trading algorithms pursue leads to 

the possibility that the interaction of these algorithms generates predictability in asset 

prices.  This predictability opens the door for manipulation. 

The motivation of market manipulators may be profit, increasing volatility in a 

market or exchange, harming a competitor, conveying false information through price, 

destabilizing an exchange or one of myriad other possible motivations.  This paper 

attempts to characterize the surface of possible manipulations available while remaining 

silent on the motivations of the manipulator. 

In this paper, we study three potential vectors of market manipulation.  The first 

we will refer to as order book manipulation.  In this type of market manipulation, the 

trader attempts to alter prices by submitting and/or cancelling orders in the order book 

in order to induce other traders/algorithms to execute orders at current prices or change 

the best bid and ask.  This form of market manipulation encompasses the commonly 

discussed “layering”, “spoofing” and related strategies (see, inter alia, O’Hara 2011, 

2015).  If HFT algorithms make use of information on the shape of the order book—how 

many bids are stacked up against the best bid, the ratio of asks to bid, etc—then a 

market manipulator can induce specific behavior in these algorithms by adding or 

deleting orders to the book in an effort to change the shape observed by the algorithms. 

We test for the presence of this possibility by determining the extent to which orderbook 

shape affects the future of prices.  We find that for the majority of tickers, changes in the 

shape of the orderbook are a significant predictor of the future midpoint price at 10, 60 

and 600 second lead times.  The distribution of regression R2 s differs between 

NASDAQ and NYSE, but both show a significant fraction of tickers where the R2 is 

greater than 0.5.  These results and analysis appear in section 2.  

The second market manipulation vector considered is within-exchange, 

cross-asset manipulation.  Specifically, we study the extent to which movements in the 

price of one asset affect the price in the same exchange of a different asset at high 

frequencies.  Here, the market manipulator could capitalize on the existence of 

cross-asset algorithms that link the prices of assets.  If the existence of these algorithms 

is suspected, then a manipulator can capitalize on this trading behavior by affecting the 

orderbook or price of one stock in order to change the price of another.  This analysis is 

found in section 3. 

Finally, we study the possibility of within-ticker, across exchange manipulation. 

That is, whether the behavior of traders and algorithms allows for influencing the price 

of a ticker on NASDAQ by manipulating the price of the same asset on NYSE, or vice 

versa.  This class of manipulation is possible if, for example,  relatively large and slow 

traders are active on one exchange and algorithmic traders are engaged in simple 

  



arbitrage of the same ticker on another exchange.  Given the complexity of modern 

markets, it is likely that other forms of market manipulation are possible. 

For each potential manipulability vector, we conduct robustness analysis to 

determine the extent to which our results are stable over time.  This analysis is by far the 

most expansive across assets and through time that have been done to date.  However, 

our results remain susceptible to changes in market conditions.  As such, the results that 

we find are subject to the critique that if the underlying algorithmic behavior linking 

assets changes, then the manipulability of the traded assets will also change. 

The question of determining whether manipulation is possible through the 

vectors discussed in this paper is connected to the question of the extent to which, e.g. 

movements in the price of a ticker on NYSE cause movements in the price of the same 

ticker on NASDAQ.  Since the shares on both NYSE and NASDAQ represent claims on 

the underlying economy, one would expect for them to move together.  Modern methods 

of determining causality require exogenous variation in the value of the ticker on only 

one exchange, in order to determine the causal impact of this change on the price of the 

asset on the other exchange.  In the absence of such exogenous variation, we attempt to 

conduct a robust analysis of necessary conditions for movements on one exchange to 

cause movements on another.  Specifically, for cross-exchange manipulability and 

within-exchange, cross-asset manipulability, we conduct a strict form of Granger 

causality testing.  We say that ticker X on NASDAQ Granger causes the price to move 

for ticker X on NYSE only if changes in the price on NASDAQ lead to changes in the 

future price on NYSE after controlling for the predictability of prices on NASDAQ and if 

changes of the price on NYSE do not predict future changes in the price on NASDAQ. 
This strict form of Granger causality provides increased confidence in the results given 

the absence of strictly exogenous variation. 

The interaction between manipulability and traditional definitions of liquidity 

makes this analysis relevant for all assets, even those for which a trader might not 

typically be concerned about market manipulation.  Liquidity in limit-order markets is 

usually operationalized to mean low spreads and deep order books.  This definition is 

very useful in many circumstances because it suggests that the next trade is likely to 

have very little effect on the equilibrium price in the market.  A broader definition of 

liquidity would account for the reaction to market prices that happens immediately after 

a trade is executed.  If the human/algorithmic reaction to the execution of a trade is 

strong enough then assets which appear to be liquid by traditional definitions (narrow 

spreads and thick books) may in fact be significantly less liquid than they appear. 

Likewise, it is an often held belief that markets that have narrow spreads and thick 

books would be less likely to be manipulated.  However, when the human/algorithmic 

interaction of traders is considered, such markets may in fact be quite manipulable.  If, 

for example, order execution or changes in order book shape leads to a large algorithmic 

  



reaction to the observed spread, then a manipulator can use this information to alter 

prices in that market.  This results in an asset that is significantly less liquid than might 

at first look be supposed. 

 

1.1 Context on the structure of markets and the role of high-frequency traders 

 

The structure and operation of equity markets has changed significantly over the 

last three decades.  Improvements in computing power brought the introduction of 

algorithmic trading, a practice of providing and removing liquidity from the market by 

sending writing algorithms that allow computer systems to communicate directly with 

the servers running an exchange, without any intervening human communication.  In 

this paper we will label the humans who implement and run such algorithms 

High-Frequency Traders, or HFTs for short.  Also during this period, changes in 

regulations like the introduction of Reg NMS led to the fragmentation of stock markets. 

O’Hara (2015) writes that high-frequency traders “make up half or more of all trading 

volume.” In addition to the major influx of this new way of trading, O’Hara discusses 

how non-HFT traders have changed their strategies in response to HFT algorithms. 

Evidence of this change is seen in the decline of HFT industry profits: “for the [HFT] 

industry overall, estimated profits have declined from roughly $5 Billion in 2009 to just 

over $1 Billion in 2013” (O’Hara 2015). For more on the recent history of the effects of 

High-Frequency Trading, see Goldstein, Kumar, and Graves (2014). 

Many HFT algorithms make decisions based on information received from the 

market, suggesting a manipulation strategy of  1) learning what an algorithm’s objective 

function is, 2) feeding the algorithm misleading information in order to 3) trade ahead 

of the fooled algorithm and profit.  Arnoldi (2016) discusses whether this behavior - if 

possible -  should be considered punishable as manipulation. Arnoldi concludes that 

with the evolving definitions of “manipulation” there should still be strong regulatory 

practices to deter manipulators from abusing algorithms. Yang, Paddrik, Hayes, and 

Todd (2012) take a simulated data set and a markov decision process model to identify 

trading strategies by HFT and non-HFT traders based on individual trading actions. 

Their model is capable of identifying high-frequency trading strategies, by observing 

orderbook data, with 90% accuracy. In contrast, Cao, Li, Coleman, and Beletreche 

(2014) take actual market data from cases of known market manipulation. After 

transforming the data, they use machine-learning techniques to create a model for 

identifying market manipulation. From these two studies, identifying algorithmic 

trading strategies seems plausible. 

Related to the question of market manipulability is the question of whether 

increased HFT participation in markets has led to less stable markets. Angel and 

McCabe (2013) cite as one of the benefits of HFTs their ability to increase market 

  



efficiency through arbitrage.  Condie (2018) shows that low-latency markets behave in 

predictable ways and that the provision of liquidity, even in very fast markets, can be 

predicted.  The speed at which algorithms correct price discrepancies across markets 

and correlated stocks improves the accuracy of asset prices. However, the Flash Crash of 

2010 brought to the attention of many researchers the potential dangers of 

High-Frequency Trading algorithms.  During the Flash Crash, the Dow Jones Industrial 

Average (DJIA) dropped 998.5 points, “the sharpest intraday point drop in history, 

followed by an astounding 600-point recovery within 20 minutes” (Madhavan 2012). 

More recently, on Feb 5, 2018, the Dow fell 1597 points in intraday trading, but in terms 

of percentage drop, the flash crash of 2010 was still more severe (6% vs 9%).  Madhavan 

(2012) argues that one cause of the flash crash was the fragmentation of the stock 

market; with more markets available today, prices are more sensitive to liquidity shocks. 

Sornette and Von der Becke (2011) believe that HFTs have contributed to market 

crashes in the past and will in the future because of  the “increasing inter-dependencies 

between various financial instruments and asset classes” HFT creates.  In contrast, 

Kirilenko, Kyle, and Samadi (2011) study the audit-trail data of the E-mini S&P 500 

futures market and conclude that HFTs did not trigger the Flash Crash, but their 

responses exacerbated market volatility.  A British national was arrested for the kind of 

“spoofing” investigated in this paper.  The individual entered a guilty plea in 2016 (see 

DOJ, 2015 and Viswanatha, 2016). More recently, when China’s central bank announced 

that they were launching “spot investigations” on bitcoin exchanges to detect the 

presence of market manipulation in Beijing and Shanghai the price of bitcoin fell by 

nearly 20% (1,200 yuan), suggesting the presence of market manipulators on these 

exchanges (Durden).  

As recently as January 2018,  lawsuits were filed against UBS, HSBC and 

Deutsche Bank (inter alia) for manipulative behavior in asset markets. Each of these 

banks have been fined millions of dollars by the United States CFTC and derivatives 

regulators for their “spoofing” and manipulation in the U.S. futures markets. This 

criminal prosecution, which is the result of a multi-agency investigation involving the 

Department of Justice (DoJ) and the Federal Bureau of Investigation (FBI), is the first 

of its kind for the CFTC (Price).  

  

2. Order Book Shape & Regressions 

 

The order book is the set of currently active limit orders to buy or sell an asset.  Figure 1 

shows an example of what an order book might look like for some asset, where limit 

order prices are on the horizontal axis and cumulative quantities of shares available are 

plotted on the vertical axis. Prices left of the spread are bids, or offers to buy the stock at 

a specific price.  As the price decreases, demand for purchasing shares at that price 

  



increases and thus the depth increases. To the right of the spread are the asks, or offers 

to sell the stock, with an increasing number of shares for sale as the price increases. The 

gap between the highest bid and lowest ask is referred to as the spread.  Whenever there 

is an overlap between the asks and bids, a trade is executed. 

 

Figure 1: Contrived Example Order Book 

 

High-frequency traders purchase data on the current state of the orderbook and 

use these data among others to make predictions about near-term price changes.  If the 

state of the orderbook is a useful predictor of future price changes then these 

algorithmic traders can solidify that predictability by making deterministic trading 

decisions based on these observations.  This introduces the possibility that market 

manipulators can use the reaction of these algorithms to alter prices by adding and 

removing orders from the orderbook in a way that induces certain behavior from the 

algorithmic traders.  We examine the extent to which the shape of the order book is 

significant in predicting price.  This allows us to make inference about how viable such a 

manipulation strategy is. 

 

2.1 Data and empirical estimation 

   

We are interested in the effects of order book shape on a stock’s price; therefore, our 

dependent variable is the midpoint price at time t,  or the average of the highest bid and 

  



lowest ask at time t.  For each ticker and month in our sample, we estimated a model 

predicting each asset’s midpoint price using the shape characteristics of the order book. 

On the right-hand side of each regression are variables representing the fraction of all 

orders that are within x% of the midpoint price.  

The estimated model is  

 

id BidBins AskBins ,m i,t = β0 + Γ i,t−1 + Λ i,t−1  

 

In the reported model, the bins are 0.1, 0.5, 1, 2, 5, 10, 15, and 30 percent of the 

midpoint price away from the midpoint for both bids and asks.  The model estimates the 

effect of the portion of total bids and asks in each bin (represented by the vectors andΓ  

) on midpoint price.Λ   

We estimate two classes of models that suggest different channels through which 

one might expect the shape of an order book to affect traders’ decisions, and thereby the 

midpoint price.  First, it may be that HFT algorithms only use the current state of the 

order book as input to predict future trends in a stock’s price. In this case, traders are 

only concerned with the shape of the order book one period before their actions.  On the 

other hand, it is realistic to believe that traders monitor the shape of the order book 

repeatedly throughout the day and infer future trends not from the current shape of the 

order book, but from its evolution over time.  In this scenario, traders are concerned 

with the changes in the order book shape more than with the actual shape itself.  

To accommodate both worldviews—the static (which is based only on the current 

shape) and the dynamic (which is based on differences in the shape)—an additional 

shape regression model was estimated by changing the bids and asks vectors to 

variables representing the changes in these bins.  In much of what follows both of these 

models were used for analyzing each ticker across both markets for 2016 and 2017. 

Going forward we will refer to the static model as the no differences model, and the 

dynamic model as the differences model. 

Each of these models measures the effect of lagged shape statistics--or change 

over time for the differences model--on a current midpoint price.  Therefore, specific 

lead times were chosen to indicate how the market day should be discretized.  There is a 

natural tradeoff between using many lead times and using too few; thus, in order to 

optimize the tradeoff between depth of analysis and parsimony, we have chosen 3 such 

lead times--10 seconds, 1 minute, and 10 minutes.  By doing so, we hope to estimate the 

impact of shape statistics on price over the span of times relevant to the low-latency 

markets that operate today.  

Our data sample was generated from all tickers over all months 2016-2017. For 

each ticker and month the midpoint price and order book shape were calculated at the 

intervals specified by the lead time for each trading day of the month. 

  



 

2.2 Results and discussion 

 

We begin with an examination of the overall explanatory power for each of the models. 

That is, we examine the distribution of R2 for each regression type.  Table 1 shows the 

average R2 values and standard deviations for both the no differences and differences 

regression models for each of the three lead times in both markets and years.  It should 

be noted that the sample size in each market is approximately 35,000 ticker-month 

regressions per specification. 

 

Table 1: Average R2 Over Regression Type & Lead Time 

 

Market NYSE NASDAQ 

Lead Time 10 

seconds 

60 

seconds 

600 

seconds 

10 

seconds 

60 

seconds 

600 

seconds 

Year 

Regression 

Type 

            

2016 

Shape, 

differences 

 

 

 

Shape, no 

differences 

 

0.6021 

(0.2404) 

 

 

0.0082 

(0.0561) 

 

0.6255 

(0.2374) 

 

 

0.0152 

(0.0589) 

 

0.6844 

(0.2221) 

 

 

0.0525 

(0.0718) 

 

 0.4726 

(0.2377) 

 

 

0.0227 

(0.0371) 

  

0.4687 

(0.2283) 

 

 

0.0602 

(0.0650) 

 

0.4818 

(0.2065)  

 

 

0.1544 

(0.0889) 

 2017 

Shape, 

differences 

 

0.6334 

(0.2447) 

 

0.6605 

(0.2358) 

 

0.7213 

(0.2148) 

 

0.4888 

(0.2408)  

 

 

0.4852 

(0.2321)  

 

0.4993 

(0.2102)  

Shape, no 

differences 

 

 

Both years 

Shape, 

differences 

 

0.0081 

(0.0585) 

 

 

0.6192 

(0.2432) 

 

 

0.0147 

(0.0629) 

 

 

0.6646 

(0.2372) 

 

 

0.0515 

(0.0785) 

 

 

0.7046 

(0.2189) 

 

 

0.0192 

(0.0327) 

 

 

0.4805 

(0.2394) 

 

 

0.0553 

(0.0611) 

 

 

0.4768 

(0.2303) 

 

 

0.1521 

(0.0900) 

 

 

0.4904 

(0.2085) 

 

 

  



 

 

Shape, no 

differences 

0.0082 

(0.0574) 

0.0149 

(0.0611) 

0.0520 

(0.0755) 

0.0209 

(0.0350) 

0.0577 

(0.0631) 

0.1532 

(0.0895) 

 

Standard Deviations are denoted in parentheses 

 

Table 1 offers clear evidence that the differences model carries much greater 

explanatory power than the no differences model across all three lead times.  In both 

markets, the average R2 for the no differences model is consistently at or below 0.15 

suggesting little explanatory power.  In contrast, the differences model average R2 is 

significantly higher across all specifications with explanatory power of at least 45% for 

both markets.  With the exception of the differences model for NASDAQ going from lead 

times of 10 seconds to 60 seconds, all R2 do appear to increase nearly monotonically as 

the lead time increases. 

 In addition to the apparent differences in the static and dynamic models, there is 

also evidence to suggest differences in the markets themselves.  Across all lead times 

and years, NYSE shows approximately 20% more explanatory power than NASDAQ in 

the differences model. The greatest difference can be seen at the 600 second lead time. 

Here, the NYSE model reports the variation in order book shape accounting for over 

70% of the variation on midpoint price while the NASDAQ model accounts for just 

under 50% of the variation. Unlike the differences models, the no differences models in 

NASDAQ offer higher average R2 values than those in NYSE while the overall small 

explanatory power can still be seen in both markets. 

For further evaluation of the distribution of the R2 values for each regression 

type, histograms are displayed in Figure 2. All histograms shown are generated from 

60-second lead time specifications (the other lead times have similar distributions). 

 

Figure 2: Histogram of R2’s 

 

2016  

  



 
 

  

2017  

  

  



  

Both Years  

 
 

  

 

Figure 2 further confirms the insights from Table 1 that the differences model 

better explains the variation in midpoint price than the no differences model. It is 

interesting to note again the differences between NYSE and NASDAQ markets. In 

NASDAQ the differences model distribution appears to be bimodal, suggesting that 

  



while the model has modest predictive power over many tickers, there is a moderately 

sized group of tickers which the model can predict very well. The differences model 

distribution for NYSE does not share the the same bimodal characteristic, but there is a 

dramatic increase in the amount of tickers the model predicts extremely well clustered 

toward 1. 

While the analysis above sheds light on how the explanatory power of each model 

vary across stocks and lead times, they do not answer the question of how they vary 

within individual stocks over time. Figure 3 attempts to answer this question by charting 

the average change in R2 per ticker for each regression type across months. The average 

R2  value for each figure is also provided as a reference to interpret the magnitude of the 

changes. This chart displays the average monthly changes in R2 between months for 

each regression type. Data from the 60 second leads was used, though it is 

representative of other lead times. Thus, the chart isolates average time effects for each 

regression type.  

Figure 3: Changes in Regression R2 Over Time 

2016 

 

Average R2: Differences 0.63, No differences 0.02 

 

Average R2: Differences 0.47, No differences 0.06 

2017 

  



 

Average R2: Differences 0.66, No differences 0.01 

 

Average R2: Differences 0.49, No differences 0.06 

 

Figure 3 suggests that, in general, there were few changes in R2 for any given 

stock and that the distribution of order-book shape explanatory power remains constant 

over the sample.  

Figure 4 represents an effort to identify those tickers that might be persistently 

susceptible to manipulation. This is accomplished by comparing the average R2 value for 

a given ticker to the standard deviation of that value across all months. For each market 

the tickers are split into two groups based on the trade density of the ticker. That is, low 

density and high density tickers are distinguished by their trade volumes being below or 

above the median amount across the market .  Since low trade volume tickers are more 

likely to be manipulable,  this separation allows an analysis of the manipulability of 

tickers that might carry market power against those that likely do not. Note that there is 

a shape imposed on these scatterplots by the fact that R2 is bounded from 0 to 1, 

implying that if the mean R2 is 0 or 1, there can be no standard deviation.  

There are two ticker categories of interest in Figure 4: persistently susceptible 

tickers and temporariliy manipulable tickers. A persistently susceptible ticker can be 

found on the bottom right (high R2 , low standard deviation) of each figure. These 

tickers are more likely to be susceptible to manipulation, since they are predictably 

characterized by changes to the order book on a long-term basis, rather than just for a 

single month. Tickers that have a high standard deviation of monthly R2 values but a 

  



moderate mean R2 are potentially manipulable by the fast learning trader, since there is 

no guarantee that the predictive power of the order book will be persistant. These 

scatterplots address potentially manipulable tickers based on explanatory power.  The 

effort required to manipulate these tickers is discussed below. 

 

Figure 4: R Squared Mean and Standard Deviation Scatterplots 

2016  

2017  

  



 

 

 

 

Both Years  

  



It is clear from the scatterplots that there is more clustering towards the bottom 

right in the low density ticker category, indicating more persistently susceptible tickers. 

This observation suggests that tickers with lower trade volumes are more likely to be 

manipulable than those frequently traded. Thus, a trader seeking to manipulate a ticker 

for financial gain must exert more effort for a well known, frequently traded ticker. This 

trend can be seen in both markets while the contrast is the most apparent in the 

NASDAQ plots. There does not appear to be any major difference between the density 

groups in regards to fast trader potentially manipulable tickers. 

 

Regression Coefficients. To gain an understanding of the specifics of these 

regression results, we examine the impact of individual covariates on future market 

prices. Due to the higher explanatory power, we limit our discussion of covariates to the 

differences model. Since coefficients vary widely across each ticker, Table 2 shows only 

those values which are representative of all regression outputs under the differences 

model. To calculate these for each market and lag specification, we sought tickers with 

  



loadings near the median for all factors. Since no ticker will have exactly the median 

value for each coefficient, we programmatically expand a band around the median until 

it contained at least one ticker. For example, in 2016 on NASDAQ with a 10 second lead, 

we had to expand the window around the median until it contained tickers within 6 

percentiles from the median for each coefficient. Since this window then included three 

tickers, the average of their values is reported. 

 

  

  



Table 2: Median Coefficient Values for Representative Stocks — Interval, Differences, 

2016 

 

 

Variables 

 

NASDAQ 

 

     10 Seconds          60 Seconds 

600 Seconds 

NYSE 

 

     10 Seconds          60 Seconds 

600 Seconds 

Consta

nt 

  0 0 2.89 x 10-4 
0 0 2.65 x 10-4 

Bids 0.1 -2.96 x 10-1
 -1.95 x 10-1

 -5.40 x 10-2
 9.48 x 10-1

 8.42 x 10-1
 7.65 x 10-1

 

  0.5 -3.29x 10-1
 -3.29 x 10-1

 -5.25 x 10-2 
9.54 x 10-1

 8.63 x 10-1
 7.33 x 10-1 

  1 -3.63 x 10-1
 -3.75 x 10-1

 -1.12 x 10-4
 9.51 x 10-1

 8.60 x 10-1
 7.68 x 10-1 

  2 -3.43 x 10-1
 -2.59 x 10-1

 -1.56 x 10-2
 1.08 8.62 x 10-1

 7.67 x 10-1 

  5 -4.11 x 10-1
 -2.82 x 10-1 

-1.09 x 10-1
 9.96 x 10-1

 8.04 x 10-1
 6.90 x 10-1 

  10 -4.75 x 10-1
 -4.14 x 10-1

 -2.19 x 10-1
 1.24 8.48 x 10-1

 8.18 x 10-1 

  15 -5.60 x 10-1
 -5.45 x 10-1

 -2.55 x 10-1
 1.18 8.40 x 10-1 

7.82 x 10-1 

  30 -3.57 x 10-2
 -4.32 x 10-2 

-1.00 x 10-1
 7.24 x 10-1

 4.54 x 10-1
 4.83 x 10-1 

Asks 0.1 5.79 x 10-1
 5.90 x 10-1

 3.36 x 10-1 
-3.32 x 10-1

 -3.15 x 10-1 
-4.56 x 10-1 

  0.5 6.17 x 10-1 
5.32 x 10-1

 3.35 x 10-1
 -2.89 x 10-1

 -3.04 x 10-1
 -5.38 x 10-1 

  1 6.81 x 10-1
 4.67 x 10-1

 3.21 x 10-1
 -3.28 x 10-1

 -2.94 x 10-1 
-5.09 x 10-1 

  2 6.66 x 10-1
 -2.59 x 10-1

 3.20 x 10-1
 -4.17 x 10-1

 -3.60 x 10-1 
-4.55 x 10-1 

  5 7.40 x 10-1
 6.07 x 10-1

 3.98 x 10-1
 -3.36 x 10-1

 -2.66 x 10-1 
-4.61 x 10-1 

  10 8.23 x 10-1
 8.49 x 10-1

 4.68 x 10-1 
-2.63 x 10-1

 -2.51 x 10-1 
-4.21 x 10-1 

  15 7.46 x 10-1
 1.03 5.40 x 10-1 

-1.52 x 10-1 
-1.86 x 10-1 

-4.02 x 10-1 

  30 2.67 x 10-1 
3.66 x 10-1 

2.39 x 10-1 
3.31 x 10-1 

2.70 x 10-1 
1.13 x 10-3 

R2 
 0.434 0.228 0.439 0.90 0.95 0.92 

Percentiles 

from median  

6 5 6 6 6 6 

Tickers in 

sample 

3 1 6 2 2 1 

  



 

  

  



Median Coefficient Values for Representative Stocks — Interval, Differences, 2017 

 

 

Variables 

 

NASDAQ 

 

     10 Seconds          60 Seconds 

600 Seconds 

NYSE 

 

     10 Seconds          60 Seconds 

600 Seconds 

Consta

nt 

  0 0 1.99 x 10-4 
0 0 0

 

Bids 0.1 -6.15 x 10-1
 -5.72 x 10-1

 -2.49 x 10-1
 9.79 x 10-1

 9.43 x 10-1
 8.28 x 10-1

 

  0.5 -7.30x 10-1
 -6.14 x 10-1

 -2.54 x 10-1 
9.41 x 10-1

 9.11 x 10-1
 7.85 x 10-1 

  1 -8.50 x 10-1
 -6.37 x 10-1

 -2.76 x 10-1
 1.04 1.00 9.36 x 10-1 

  2 -9.02 x 10-1
 -6.13 x 10-1

 -3.27 x 10-1
 1.08 1.06 9.27 x 10-1 

  5 -9.87 x 10-1
 -6.90 x 10-1 

-4.59 x 10-1
 1.14 1.12 1.16

 

  10 -1.11 -7.76 x 10-1
 -6.93 x 10-1

 1.04 1.02 9.70 x 10-1 

  15 -1.26 -1.10 -9.06 x 10-1
 1.07 1.04

 
8.55 x 10-1 

  30 -1.38 x 10-1
 -2.47 x 10-2 

-1.45 x 10-1
 5.33 x 10-1

 4.84 x 10-1
 5.12 x 10-1 

Asks 0.1 1.08 8.63 x 10-1
 8.87 x 10-1 

-4.60 x 10-1
 -4.22 x 10-1 

-4.99 x 10-1 

  0.5 1.16
 

9.53 x 10-1
 9.00 x 10-1

 -4.32 x 10-1
 -3.82 x 10-1

 -4.12 x 10-1 

  1 1.23 8.99 x 10-1
 9.03 x 10-1

 -4.49 x 10-1
 -4.20 x 10-1 

-4.16 x 10-1 

  2 1.26 9.05 x 10-1
 9.25 x 10-1

 -4.72 x 10-1
 -4.46 x 10-1 

-5.24 x 10-1 

  5 1.35 9.81 x 10-1
 1.01 -4.95 x 10-1

 -4.78 x 10-1 
-6.23 x 10-1 

  10 1.51 1.06 1.67
 

-4.04 x 10-1
 -3.76 x 10-1 

-5.13 x 10-1 

  15 1.93 1.41 1.81
 

-3.30 x 10-1 
-2.93 x 10-1 

-5.32 x 10-1 

  30 4.08 x 10-1 
2.09 x 10-1 

8.03 x 10-1 
3.68 x 10-1 

3.97 x 10-1 
4.40 x 10-1 

R2 
 0.497 0.445 0.466 0.964 0.968 0.904 

Percentiles 

from median 

5 6 5 5 4 6 

Tickers in 

sample 

2 3 1 2 2 1 

 

  



A few interesting patterns emerge from analyzing this table. First note that while 

some consistency is found within each market across lag times, there is very little 

consistency across the two markets. This suggests the presence of a fundamental 

difference between the two markets in the manipulability of each ticker and the effects 

that each characteristic of the tickers’ order book has on the price. For example, a trader 

seeking to drop the price of a ticker by adding either bid or ask orders within .5% of the 

midpoint price might succeed if trading on NYSE and fail if trading on NASDAQ. 

A visual representation of the data from Table 2 is found in Figure 5. This figure 

depicts the response of the midpoint price to the addition of 1% of total order book 

volume to different price bins. The results correspond to those obtained from the 

interval regression, differences model, using data from both years and a 60 second lag 

time. While this figure is drawn from NASDAQ data, results from NYSE look nearly 

identical. The median midpoint price response is shown, along with the 25th and 75th 

percentile midpoint responses. 

 

Figure 5: Midpoint Response to the Addition of 1% of the Order Book to Different Bins 

 

 

  



 

 

  



 

 

  



 

Figure 5 demonstrates some interesting results. Note the presence of positive or 

negative drift on some tickers, where the coefficients on all price bins are of the same 

sign. This is likely due to the effect of some tickers in the sample decreasing in price 

through the course of the month sampled. While this is somewhat unusual, the majority 

of tickers actually have mixed signs on coefficients, and this observed phenomenon is 

likely a result of selecting tickers with all coefficients near the 25th or 75th percentiles. 

Note that there is some question as to what signs one might reasonably expect 

coefficients of asks and of bids to have on the midpoint price. As part of our analysis, we 

calculated what fraction of ticker-months had ask coefficients all of the same sign, with 

bid coefficients all of the opposite sign. For NASDAQ in 2016 with a 60 second lead on 

the differences model, results indicate that 23.3% of tickers have all negative bid 

coefficients and all positive ask coefficients, while 10.3% of all tickers have all positive 

bid coefficients and all negative ask coefficients. For NYSE under the same specification, 

the numbers are 2.0% and 16.0% respectively. 

These statistics suggest that the majority of tickers in both markets experience 

coefficient sign changes as the bin sizes change. The presence of these changes in 

average signs of regression coefficients warrant a closer look at their distribution. Figure 

6 presents boxplots of each regression coefficient for the shape, differences regression in 

both markets. The outer whiskers of each boxplot denote the 25th and 75th percentile. 

 

Figure 6: Boxplot of Regression Coefficients, Shape, Differences Regression, 60 seconds 
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2017 

 

 

  



 

Notice that each variable is centered near zero, with varying amounts of spread. 

The variation in coefficients for the shape covariates seem to slightly increase as bids 

and asks move farther away from the book’s midpoint. While there may be evidence to 

suggest a positive or negative effect, the means are too close to zero to comfortably 

determine if an effect is uniformly positive or negative (at least from the boxplot, which 

differs from typical t-tests used in the regression).  

We are also interested in how these coefficients change within specific stocks over 

time. Given the large volume of data, this was not easily demonstrated in figures, but 

will be discussed below by examining a small sample of stocks.  We examine the tickers 

with the highest potential to be manipulated. We limit our analysis to stocks with high 

R2’s for the differences regression, although the results for other potentially manipulable 

tickers are similar. In this section, we examine the specific regression output for these 

stocks. The results for nine representative stocks can be seen in Table 3.  

 

 

 

 

 

Table 3: Regression Outputs for Selected Stocks with High R2 (Shape, Differences, 60 

sec.) 

 

Representative 

Stocks A B C D E F 

G H I 

Variabl

es 

                    

Bids 0.1 0.08 0.81 0.13 3.37 5.08 0.42 0.07 1.15 0.91 

 0.2 0.14 0.78 0.11 2.40 6.05 0.46 0.06 1.11 0.95 

 1 0.10 0.76 0.17 2.24 7.67 0.49 0.05 1.08 1.23 

 2 0.07 0.50 0.14 2.09 10.2

5 

0.55 0.07 0.94 1.03 

 5 0.09 0.33 0.14 2.60 6.69 0.65 0.12 0.82 1.49 

 10 0.04 0.15 0.06 3.17 2.83 0.24 0.15 0.72 0.93 

  



 15 0.01 0.16 0.10 3.13 6.41 0.17 0.10 0.31 1.28 

 30 0.06 0.15 0.16 2.34 8.37 0.52 0.22 -0.44 1.16 

Asks 0.1 0.00 -0.55 -0.05 -3.14 -3.4

2 

-0.26 -0.07 -0.08 -0.33 

 0.2 -0.0

2 

-0.55 -0.04 -2.54 -5.8

3 

-0.32 -0.06 0.03 -0.48 

 1 -0.0

3 

-0.49 -0.05 -2.54 -6.1

5 

-0.36 -0.05 0.12 -1.20 

 2 -0.0

3 

-0.31 -0.03 -2.44 -9.3

2 

-0.62 -0.09 0.18 -0.93 

 5 -0.0

2 

-0.17 0.01 -2.67 -7.1

7 

-0.58 -0.14 0.18 -0.97 

 10 0.02 -0.04 0.04 -3.22 -0.4

2 

0.08 -0.14 0.08 -0.34 

 15 0.05 0.37 -0.03 -2.39 -3.3

1 

0.18 -0.12 0.66 -0.66 

  30 0.10 -0.12 -0.04 -0.85 -6.8

5 

-0.35 -0.20 0.79 -0.57 

 

Although this table only illustrates a small subset of the available tickers, there 

are interesting patterns that can be observed. First, aside from tickers D and E, most of 

the average coefficients tend to remain close to zero indicating that their effect on the 

midpoint price could be positive or negative at any given time. Tickers D and E have 

high variability of coefficient sizes as bin sizes increase. For example, ticker E has a very 

low coefficient of -7.17 for the Ask 5 covariate followed by a coefficient near zero at -0.42 

for the Ask 10 covariate.  

There is also a considerable variability in the signs of the ask covariates across 

tickers. Even within this extremely small sample, no ask covariate has the same sign 

across all sample tickers. The same cannot be said for the bid covariates as they all 

maintain a positive sign across all tickers and bins, with the exception of ticker H for the 

bid 30 covariate.  

  



These results suggest that asset-specific knowledge is required to manipulate 

many stocks.  Figure 7 represents two stocks of our subsample of nine potentially 

manipulable tickers. Each graph shows the changes in regression coefficients between 

months for 2016 in both NYSE and NASDAQ markets, stacked on top of each other.  

 

Figure 7: Changes in Coefficients Over Time (select stocks, 60 second lead) 

NYSE 

 

 

 

NASDAQ 

  



 

 

 

Notice that for some months, there are huge positive and negative changes in 

coefficients. There is no distinct pattern as to what months will impact which 

coefficients in which stock, and an analysis of the other six stocks in this small 

subsample only adds to the chaos.  These results are suggestive of the results that hold 

for 2017. 

To synthesize the past few sections of our analysis and include a measure that 

combines order book volume, R2, and coefficient size. If a stock consistently has high 

predictability and large regression coefficients (reflecting large changes in price for 

small changes in the order book), this will do nothing for a malicious trader if the 

number of shares on the book for that ticker is so large that the trader cannot effect 

meaningful changes in the shape of the orderbook. Similarly, if the ticker is a 

low-volume ticker with large coefficients with a low or varying R2, a malicious trader will 

incur significant risk in attempting to manipulate the asset’s price. Finally, low-volume 

tickers with consistently high R2s but small coefficient values must manipulate the 

  



orderbook a lot to effect small changes in the midpoint, which may expose them to 

detection. 

Figure 8 seeks to incorporate these ideas into one representation of susceptibility 

to attacks. This shows scatterplots of the distance of regression coefficients from zero 

against the difference between the highest R2 standard deviation and the standard 

deviation of R2 for each ticker, multiplied by the R2 of the ticker. This is done in an 

attempt to incorporate both size and stability of R2 for a ticker. Only tickers with a 

volume lower than the median are included in the sample. As before, the R2 standard 

deviation of each ticker is calculated by finding the standard error of the R2 for that 

ticker across each of the 12 months in the sample year. Here the sample year was 2017, 

and 2016 data is nearly identical. Note that in the label to the y-axis,  represents theσ  

maximum standard deviation of R2 for each ticker across all months of the sample.  

 

Figure 8.  Characterizing orderbook shape manipulability for NASDAQ (left) and 

NYSE (right) 

 

 

 

By this metric, manipulability risk increases as one moves upward and to the 

right, since these are tickers which have large coefficients and have consistently high 

R2s. The presence of tickers in this zone, especially on NASDAQ, suggests the possibility 

of manipulation as described. 

 

3. Cross-asset manipulability 

 

  



When traders’ algorithms use the price of asset i when determining behavior for asset j, 
this introduces correlation between asset prices.  This correlation opens the possibility 

of manipulability as trade in asset j can lead to predictable price movements in stock i.  

We examine the possibility of this type of manipulation by studying correlation 

and Granger Causality across assets within exchanges. The Granger Causality test used 

here explores the predictive power of asset j’s price on asset i, one period from now.  We 

estimate  

ids  α mids mids  εm i,t =  0 + α1 i,t−1 + β j,t−1 +  t  

 and say that j Granger Causes i if β is not zero statistically. 

As above, we run these regressions at 10 second, 1 minute and 10 minute lead 

times.  Granger Causality tests were estimated for each ticker on both exchanges using 

the 5 most correlated assets.  We say that ticker j Granger Causes ticker i if our 

statistical test shows that ticker j causes ticker i, but ticker i does not cause ticker j. It is 

important to note that while Granger causality is not the strongest possible test of 

causality, it is likely the strongest test that can be done systematically across the whole 

market.  As discussed in the introduction, without consistent sources of plausibly 
4

exogenous variation, these tests are state of the art.  They may not however, be able to 

determine causality in situations with confounding variables.  

Assets that are most vulnerable to within-exchange, cross-asset manipulation 

must have consistently high correlation across a number of months. Assets whose 

correlation varies widely would be difficult to manipulate because the effects of market 

actions cannot be consistently predicted.  

Figure 9 shows histograms of the correlation for all asset pairs studies for each of 

the twelve months in both years, for each of the two exchanges NYSE and NASDAQ and 

for a ten second lead time. The distribution of correlations is almost identical for the 1 

minute and 10 minute lead times. It is noteworthy that both NASDAQ and NYSE display 

heterogeneity in the distribution of correlations across months, in particular January 

2016 and October/November 2016.  This variation in the distribution of correlations 

across months suggests the potential for changing economic relations between assets as 

well as a changing set of algorithmic relationships between these assets. 

 

 

Figure 9: Correlation Histograms  

 

NASDAQ 10 Second Lead, 2016 

 

  

4 Conducting a randomized controlled trial, or obtaining information on the proprietary algorithms are two 
possible ways to conduct stronger tests of causality. 

  



NASDAQ 10 Second Lead, 2017 

 

 

 

 

 

  

  



NYSE 10 Second Lead, 2016 

  

  



NYSE 10 Second Lead, 2017 

 

 

 

This being said, the distribution of correlations across months is stable for many 

months.  This discovery begs the question of whether the stability of the correlation 

distribution stems from most assets not changing correlation, or whether many pairs 

change correlation, but these changes offset each other, leading to a stable distribution. 

To address this question, Figure 10 shows the proportion of asset pairs whose 

correlation changes in absolute value by more than a particular threshold from month to 

month. It is worth noting that for most months, only about 20% of the correlations 

change by a magnitude of one or more (for example going from -0.2 to 0.8), which 

suggests that most of the changes in ticker distributions evident in the histograms can 

be explained by many tickers changing by a small amount, rather than a few tickers 

changing by a lot. 

 

Figure 10: Correlation Change Magnitude 

 

  



 

 

  



 

 

  



 

Since tickers that are manipulable in this way will have a high correlation across 

time, consistently manipulable tickers will have a high average correlation and low 

correlation variance.  Figure 11 shows a scatter plot of mean correlations and their 

variances for every permutation of ticker pairs through all twelve months in 2016 and 

2017. 

 

Figure 11: Correlation Means and Variance 

 

  



 

 

  



 

Asset pairs found on the bottom left and bottom right of each of these figures are 

highly susceptible to manipulation, as they are consistently highly correlated or highly 

negatively correlated. Assets in the lower center are a hedged asset pair, as they are 

consistently not correlated. Asset pairs found in the upper center of each plot are of 

particular interest since they are on average not correlated, but have high variance of 

correlation, meaning some months they are really positively correlated and other 

months negatively correlated, suggesting that their relationship changes frequently over 

time.  This change in correlation could arise from a changing news environment, or the 

inclusion or exclusion of these pairs from an HFT algorithm. The overall shape of these 

scatter plots is constrained since correlations are bounded between -1 and 1. 

 

3.1 Granger Causality Results 

 

We next seek to assess manipulability risk via correlated tickers. To do this, for 

each asset i we select the 5 most correlated tickers and conduct a Granger Causality test 

of those 5 (separately) on the price of i. We display the results using December 2016 

data, but these same figures were produced and analyzed from various months and the 

general relationships and findings presented are consistent across months. Figure 12 

presents histograms summarizing this information.  We see in the 60 second sample 

that approximately 7.9% and 7.2% of NYSE and NASDAQ tickers, respectively, resulted 

  



in none of the five analyzed tickers having a statistically significant coefficient in the 

Granger causality test. However, for 27.7% of NYSE and 43.5% of NASDAQ tickers all 

five of the examined tickers have significant coefficients.  

 

Figure 12 - Number of Granger Causal Tickers Histogram 
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2017 

  



 

To understand the magnitude of manipulability, we analyzed the largest of the 

five beta coefficients (in terms of absolute value) for each ticker. These beta coefficients 

can be seen in a histogram in Figure 13. In this figure, ease of manipulation is increasing 

in the absolute value of the coefficient. Across sample intervals and exchanges, the mean 

is consistently positive with a positively skewed distribution.  The variance of the betas 

grows as the sample intervals increase while the overall “shape” of the distribution 

remains roughly the same. This could suggest that the relationships are consistent 

across time interval samples and that the relationship is robust. 

 

Figure 13 - Distribution of Granger Causal Betas 

2016 

  



 

2017 

  



 

Lastly, we consider the relationship between the market cap of a ticker and that 

ticker’s price manipulability, where  

arketCap  # of  Outstanding Shares  riceM i =  i × P i  

Figure 14 plots maximum beta against market cap (on a log scale). These plots suggest 

that large causal coefficients are not strongly correlated with market capitalization. The 

stocks in the top right or bottom right of the plots are the stocks that pose higher 

systematic risk to the market as a whole of manipulability given their large beta 

coefficient and large market cap.  

 

Figure 14 - Relationship of Market Capitalization and Manipulability 
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4. Cross-market Manipulability 

 

In this section, we study the extent to which the price of assets on one exchange Granger 

Cause the price of the same asset on another exchange.  The relationship between prices 

of the same asset on two exchanges is likely to be tightly coupled in equilibrium because 

of the natural incentive for price arbitrage.  In many economic models, the prices would 

be assumed to be the same across exchanges.  However, the efforts of arbitrageurs to 

profit from price differences (and in so doing drive prices together) require time and 

resources.  Along with understanding manipulability, the results of this section can also 

  



be interpreted as measuring the speed and extent to which these arbitrageurs are 

successful at bringing prices together. 

 

Figure 15. Fraction of total tickers for which the NYSE Granger Causes NASDAQ 

(column 1), NASDAQ Granger Causes NYSE (column 2), or neither (column 3), 

December 2016. 

 

 

 

 

  



 

 

Figure 15 shows the fraction of tickers where either the price on NYSE Granger Causes 

the price on NASDAQ, or the price on NASDAQ Granger Causes the price on NYSE, or 

neither, for December 2016.  Note that because of our strict definition of Granger 

Causality, it is not possible for the price on NASDAQ to Granger Cause the price on 

NYSE and the price on NYSE to Granger Cause the price on NASDAQ.  

First we note that the fraction of tickers for which there is causality in one 

direction is substantial even at the 10 and 60 second lead times.  While not as 

substantial as the 600 second lead time, approximately 30% of tickers show some 

possibility for manipulation in this area.   Next we note from these results the 

substantial heterogeneity between the 10 and 60 second lead times and the much longer 

600 second lead time.  This difference could be the result of differences in trader 

composition across these exchanges.  It suggests a fundamental divergence in the 

strategies, resources or information of market participants across the two exchanges and 

represents an important area for future research.  

From the standpoint of manipulability, the 2016 plots suggest that 

cross-exchange manipulability is possible and that the behavior of arbitrageurs is not 

consistent across assets and time frames.  

 

5. Conclusion 

 

The linear relationships between the price of an asset, the asset’s orderbook shape, 

cross-asset prices and cross-exchange prices studied herein suggest that in low latency 

situations the covariance structures often assumed in general equilibrium models need 

  



to be amended to be consistent with observed data. The observations made here suggest 

that portions of U.S. equity markets are susceptible to manipulation in the 10 second to 

10 minute range.  The extent to which such manipulation poses long-term risks to asset 

markets depends on the policy response taken in response to these risks.  In recent years 

NASDAQ has begun implementing circuit breakers that will automatically stop trading 

in assets given an abnormally large decline in the asset’s price.  These circuit breakers 

have the potential to ameliorate some of the problems discussed in this paper since an 

asset cannot be manipulated if it doesn’t trade.  The research here however, suggests a 

potential avenue for making the circuit breakers more efficient.  An asset that is more 

manipulable as measured by the methods discussed here, may be well served to have a 

more strict circuit breaker than one that is less manipulable.  This would allow prices to 

better reflect investor information in tickers where that sentiment is less likely to be 

manipulated.  For tickers where the likelihood of manipulation is higher, prices are less 

likely to appropriately aggregate investor preferences and more strict circuit breakers 

could be warranted. 

This research makes clear that the statistical properties of prices on NASDAQ and 

NYSE vary.  Further understanding of the causes of this difference is a fruitful area of 

future research.  The role that differences in investor information, resources and/or 

strategies across exchanges play in the statistical properties of prices on those exchanges 

and their pursuant manipulability will be of interest to academics and policy makers in 

finance and national security.  
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