
Configurable arbitrage and slippage in automated

market making systems

Scott Condie1

10 November 2022

1Department of Economics, Brigham Young University. Email: ssc@byu.edu. Telephone:
+1.801.422.5306.

ABSTRACT
Automated market making systems have become increasingly popular in recent years. This
paper studies the constant elasticity pricing function, a generalization of the typical con-
stant product pricing function. This generalization allows for oracle-based, arbitrage-free
pricing, as well as configurable liquidity. Each of these possibilities come with trade-offs that
are discussed, including the competitive environments in which this increased flexibility is
desirable.

1 Introduction

Many smart contracts, like those available through the Ethereum cryptocurrency system,

require that an exchange always have liquidity available to trade. This has led to the rise of

automated market making (AMM) systems like those used by the Uniswap1 cryptocurrency

system. As of October 2021, Uniswap had daily trade volume of over $2 billion with total

value locked (TVL) of $3.3 billion.2 These AMM systems use pricing functions to determine

the prices between two assets in a pool, as opposed to the more traditional limit order books

used in many asset markets.

In limit order book trading environments, liquidity providers add limit orders to both the

bid and ask side of the market that can be traded against by liquidity demanders. These limit

orders specify the price at which the order can be executed against an incoming marketable

order, as well as the quantity available for trade at that price. AMM systems differ in that

liquidity providers add liquidity in one or both currencies to a pool, but do not specify3, the

price at which this liquidity will be traded. Liquidity demanders can trade one asset for the

other at a price specified by a pricing function. The most commonly used pricing function

is the constant product pricing function where the reserves of two assets with quantities x

and y must satisfy the equation xy = k. The constant k is greater than zero. In this system,

1Uniswap (https://uniswap.org)
2Total Value Locked is the value of all assets (at current market prices) of assets committed to contracts

in the system.
3At least in their canonical form. Uniswap v3 introduces some ability to specify price ranges.

a trader who wants to acquire ∆x units of asset x must pay ∆y units of asset y where ∆x

and ∆y satisfy (x−∆x)(y +∆y) = k. This expression implies a price of

∆y =
k

x−∆x
− y. (1)

This AMM function has several properties of interest. First, it is simple. Second, since

lim∆x→x∆y = ∞ and lim∆y→y ∆x = ∞, prices increase without bound as the demand for

the asset increases, ensuring that there will always be liquidity available for each asset.

Unlike traditional limit orderbooks, individuals add orders to the liquidity pool and in so

doing, determine the terms of trade. In constant product markets, however, traders do not

have the option of determining the price impact of trades in the market in a manner that is

unconnected to the price. Price impact and price are determined jointly by the size of the

asset pool and the pricing function.

In traditional limit order books price and price impact can be determined separately and

asymmetrically. For example, at a moment in time the price impact of a marketable sell order

for 100 shares of an asset can be larger or smaller than the price impact of a marketable buy

order for 100 shares of the same asset. This flexibility does not exist for traditional constant

product pricing rules.

This paper shows that exchanges wanting to alter the liquidity/price-impact properties

of their pools can do so through generalizing the constant product pricing function. Section

2 defines analytical properties of a pricing function, while section 3 presents results on the

generalization considered here. Section 4 applies this generalization to develop an arbitrage-

free AMM system with flexible liquidity properties.

2

1.1 Literature

This paper uses the concept of pricing functions which are conceptually similar to scoring

rules in prediction markets. Hanson (2007) studies the logarithmic market scoring rule

(LMSR) in the framework of prediction markets and is one of the foundational works in the

field of AMM pricing functions. It demonstrates that the LMSR (under some assumptions)

can converge to true underlying probabilities. This paper doesn’t concern prediction markets,

but deals with generalized scoring rules similar to the LMSR.

Lekwijit & Sutivong (2018) studies the choice of parameters in the LMSR, showing

(among other things) that the choice of the liquidity parameter can affect the speed with

which the market converges to a true underlying value. This result is related to the discussion

surrounding figure 3 which suggests that when market liquidity increases, more variation in

the liquidity pools is required to alter prices. Agrawal et al. (2009) provides a unified frame-

work for thinking about pricing functions in AMMs using convex optimization. They give

conditions for myopic truthful bidding, among several other properties and study several

risk measures in the framework they derive. Park (2021) discusses front running (sometimes

referred to as “sandwich attacks”) in automated markets.

2 General automated market making pricing functions

AMM pricing functions have the general form

f(x, y, θ) = k (2)

where x and y are quantities of the two assets available in the pool, θ represents a vector of

parameters and k is a constant. In the constant product function commonly used, f(x, y, θ) =

xy.

3

For any pricing function, we define px (the price of x) to be

px = −dy

dx
=

∂f/∂x

∂f/∂y
. (3)

Note that this is the marginal price (in terms of y) of purchasing a small amount of asset

x. Define the price impact of x as follows.

Definition 1. The price impact of the asset x is the function

dx(x, y, θ) = −∂px
∂x

1

px
. (4)

The price impact of x, dx(x, y, θ), is the semi-elasticity of the price with respect to a

change in the pool quantity of asset x. In other words, it is the percent change in price that

occurs for a small purchase (or sale) of asset x. An asset is more liquid than another if its

price impact dx is smaller.4

The traditional constant product pricing function takes the form

f(x, y) = xy (5)

and has price and price impact of

px =
y

x
(6)

and

dx =
1

x
(7)

respectively.

4The negative sign in this equation is present for interpretation. A purchase of asset x in the pool
decreases the quantity of x available in the pool so the expression gives the price increase from a purchase
of asset x.

4

3 Constant elasticity pricing functions

Consider the family of pricing functions given by

f(x, y, θ) =
(
αx1+θ + (1− α)y1+θ

) 1
1+θ . (8)

with θ ≤ 0.

Purchasing ∆x units of asset x requires adding ∆y units of asset y, where

∆y =

(
k1+θ − α(x−∆x)1+θ

1− α

) 1
1+θ

− y (9)

This pricing function has marginal price

px =
α

1− α

(
x

y

)θ

(10)

and price impact

dx = −θ
α

1− α

(
x

y

)θ−1
1

y

1

px
= −θ

1

x
. (11)

For the constant elasticity pricing function the price and price sensitivity are parameter-

ized through α and θ in a way that allows them to be set by market designers.5

As can be seen, (8) approaches (5) in terms of its price and price sensitivity when α = 1
2

and θ → −1.

For values of θ satisfying −1 < θ < 0, the constant elasticity pricing function given in (8)

will be locally less price sensitive (and thus more liquid) than the constant product pricing

function in (5) for equal pool sizes. This allows market designers to choose price sensitivity

based on competitive concerns.

5The constant elasticity pricing function gets its name from the fact that the elasticity of price with
respect to quantity purchased ϵ = ∂px

∂x
x
px

is constant at θ.

5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

∆x

0

5

10

15

20

25

30

35

∆
y

CE (θ = − 1
2)

CE (θ = −2)

CP

Figure 1: Constant elasticity pricing function (blue and green) as compared to a constant
product pricing function (red). α = 1

2
, θ ∈

{
−1

2
,−2

}

6

Figure 3 shows the realized price for a simulation where the same additions and with-

drawals are made to markets with the constant pricing function and the CEPF with values

of θ = −1/2 and θ = −2. The price impact of the CEPF for θ = −1/2 is lower than the

constant product pricing function for identical pool changes, while the price impact is larger

for θ = −2.

3.1 Arbitrage-free pricing

The constant elasticity pricing function allows market designers flexibility in both prices and

the liquidity around prices, as given by price impact.

In automated market making situations where market designers want to provide to par-

ticipants transactions at a price that replicates those in a pre-existing market, constant

elasticity pricing functions can be used, together with a price oracle (e.g. the displayed

price from the existing market). This will be a desirable property for market designers if

providing liquidity at otherwise available market prices is advantageous, either because of

legal restrictions6, market norms, or competitive concerns.

To see how this can be done, let po be the reference price obtained from an oracle. If the

value of the parameter α in the CEPF is set to

α =
po

po +
(

x
y

)θ
(6)

then the AMM price will always equal the oracle price. As is to be expected, providing

arbitrage-free prices will have side-effects on other properties of the market. These will be

discussed later.

As seen previously, the CEPF also allows for market designers to configure the liquidity

6Such as those similar to Regulation NMS in the United States that require that regulated market makers
provide traders the nationally best available price for their trades.

7

0 25 50 75 100 125 150 175 200

0.2

0.4

0.6

0.8

1.0 CE (θ = − 1
2)

CE (θ = −2)

CP

Figure 2: Constant Product (CP) and Constant Elasticity (CE) Price Impact in Identical
Market Conditions. α = 1

2
, θ ∈

{
−1

2
,−2

}
.

8

or price impact of trades available at the current market price.

3.2 Configurable liquidity

The price impact for the CEPF given in equation (5) is

dx =
θ

x
. (12)

Since θ < 0, increasing θ increases liquidity by decreasing price impact and decreasing θ

decreases the liquidity available in the market by increasing the price impact.

One implication of the decreased price impact, is that more market activity is required

to maintain no-arbitrage for a given oracle price. Specifically, since

pCP
x =

y

x
(13)

and

pCE
x =

α

1− α

(
x

y

)θ

, (14)

Consider a small percent change in the price of an external oracle around which arbitrageurs

will equate prices. The percent change7 in price then satisfies

%∆(po) = %∆
(
pCE
x

)
= θ

(
%∆xCE −%∆yCE

)
. (15)

For a constant product pricing function this equation becomes

%∆(po) = %∆
(
pCP
x

)
= %∆yCP −%∆xCP . (16)

Together, these imply that for the same oracle-based price, maintaining price parity

7This uses the standard first-order approximation for percent changes.

9

requires that

%∆yCE −%∆xCE

%∆yCP −%∆xCP
= −1

θ
(17)

which implies that for a given small change in the external price, there will need to be more

change in the liquidity pool available on the CEPF market than on the CP market in order

to maintain price parity.

As an example, for a CE market with θ = −1/2, a 1 percent increase in the oracle price

would require twice as much change in the ratio y/x in the CE market than in the CP

market.

Figure 3 demonstrates this using data from the Binance Bitcoin/USD Tether exchange

from March 9, 2022. The blue, green and red lines give the required BTC liquidity pool

size in order to maintain price parity between a theoretical automated market and the price

given in the Binance market (shown by the gray line with right axis).

4 Simultaneous matching of oracle prices and oracle

slippage

Since constant elasticity pricing functions allow for oracle-based marginal prices with cali-

brated slippage, they can also be used to mimic the slippage found in a limit orderbook based

oracle. To do this, the market designer chooses a benchmark trade quantity to be taken from

the oracle’s limit orderbook of ∆x units of asset x. Let so be the oracle’s orderbook slippage

defined to be

so =
po(∆x)− po

po
(18)

The price sensitivity given in equation (4) can be used as an approximation to the slippage

10

01
: 00

02
: 00

03
: 00

04
: 00

05
: 00

06
: 00

07
: 00

08
: 00

09
: 00

10
: 00

11
: 00

12
: 00

13
: 00

14
: 00

15
: 00

16
: 00

17
: 00

18
: 00

19
: 00

20
: 00

21
: 00

22
: 00

23
: 00

9800

10000

10200

10400

10600

10800

R
eq

u
ir

ed
B

T
C

li
q
u

id
it

y

CE (θ = − 4
5)

CE (θ = − 6
5)

CP

po

39000

39500

40000

40500

41000

41500

42000

42500

B
T

C
U

S
D

T
p

ri
ce

(B
in

an
ce

)

Figure 3: Implied BTC pool size under differing θ (Binance BTC/USDT–March 9, 2022)

11

found in the orderbook. For relatively small values of ∆x,

sAMM = dx∆x = −θ

x
∆x (7)

will be used to approximate the slippage in the oracle market. Setting sAMM = so so that

θ = − so
∆x
x

= −s0x

∆x
. (19)

matches slippage for small quantities in the automated market with slippage in the oracle.

Given this value for θ, α can be calculated given the price in (6), which implies a param-

eterization

α =
po

po +
(

x
y

)θ

θ = −s0x

∆x

(8)

As an example, figure 4 shows the values of α and θ necessary to match the price and

slippage given in the Binance data shown previously for a hypothetical AMM market. The

oracle’s price and slippage are presented in the bottom two graphs. The simulations are

drawn with no change in the liquidity pool over the day. Changes in the liquidity pool will

change the implied parameter values, but not the process of calculating those parameters

given in (7).

Looking at the oracle’s slippage in the bottom graph, it can be seen that in order to

purchase ∆x = 1 units of BTC requires price slippage of between 0 and 0.00025

To investigate the precision of the parameterization of θ to match slippage, figure 5 shows

the slippage present in the orderbook at a moment of time on the day in question, along with

the slippage of the AMM price function where θ has been calibrated in the way described

above for three candidate values of ∆x.

This figure demonstrates that calibrating slippage to an orderbook can be sensitive to

12

01
: 00

02
: 00

03
: 00

04
: 00

05
: 00

06
: 00

07
: 00

08
: 00

09
: 00

10
: 00

11
: 00

12
: 00

13
: 00

14
: 00

15
: 00

16
: 00

17
: 00

18
: 00

19
: 00

20
: 00

21
: 00

22
: 00

23
: 00

0.9750

0.9755

0.9760

0.9765

0.9770

Im
p

li
ed
α

01
: 00

02
: 00

03
: 00

04
: 00

05
: 00

06
: 00

07
: 00

08
: 00

09
: 00

10
: 00

11
: 00

12
: 00

13
: 00

14
: 00

15
: 00

16
: 00

17
: 00

18
: 00

19
: 00

20
: 00

21
: 00

22
: 00

23
: 00

−0.075

−0.050

−0.025

0.000

Im
p

li
ed
θ

01
: 00

02
: 00

03
: 00

04
: 00

05
: 00

06
: 00

07
: 00

08
: 00

09
: 00

10
: 00

11
: 00

12
: 00

13
: 00

14
: 00

15
: 00

16
: 00

17
: 00

18
: 00

19
: 00

20
: 00

21
: 00

22
: 00

23
: 00

39

40

41

42

B
T

C
/U

S
D

T
P

ri
ce

01
: 00

02
: 00

03
: 00

04
: 00

05
: 00

06
: 00

07
: 00

08
: 00

09
: 00

10
: 00

11
: 00

12
: 00

13
: 00

14
: 00

15
: 00

16
: 00

17
: 00

18
: 00

19
: 00

20
: 00

21
: 00

22
: 00

23
: 00

0.00000

0.00025

0.00050

0.00075

B
T

C
/U

S
D

T
S

li
p

p
ag

e
(∆
x

=
1
)

Figure 4: Values of α and θ required to match the liquidity and price slippage found in a
traditional market. (Binance BTC/USDT–March 9, 2022.)

13

0 1 2 3 4 5

∆x

0.0000

0.0001

0.0002

0.0003

0.0004

S
li
p

p
ag

e

AMM slippage, θ(0.03)

AMM slippage, θ(0.05)

AMM slippage, θ(0.09)

Oracle slippage

Figure 5: AMM slippage relative to oracle slippage for three parameterizations of price im-
pact. Slippage is shown for θ corresponding to ∆x ∈ {0.03, 0.05, 0.9}. Binance BTC/USDT–
March 9, 2022: 10:00:00 a.m.

14

the ∆x that is chosen to match AMM slippage to the orderbook slippage. Since slippage

in traditional orderbooks is often discontinuous in ∆x, the slippage parameterized by θ will

change discontinuously as ∆x spans discontinuous jumps in slippage in the orderbook.

5 Conclusion

Generalizing automated market making functions allows exchanges to alter the liquidity

properties of their pools independent of the price. This flexibility allows pools to cater to

particular user needs and market segments, as well as mitigate risk in certain circumstances.

Necessarily, this flexibility comes with added complexity. However, the specific functional

forms described in this paper remain reasonable computationally and are easily verifiable by

humans.

References

Agrawal, S., Delage, E., Peters, M., Wang, Z. & Ye, Y. (2009), A unified framework for dy-

namic pari-mutuel information market design, in ‘Proceedings of the 10th ACM conference

on Electronic commerce’, pp. 255–264.

Hanson, R. (2007), ‘Logarithmic market scoring rules for modular combinatorial information

aggregation’, The Journal of Prediction Markets 1(1), 3–15.

Lekwijit, S. & Sutivong, D. (2018), ‘Optimizing the liquidity parameter of logarithmic market

scoring rules prediction markets’, Journal of Modelling in Management .

Park, A. (2021), ‘The conceptual flaws of constant product automated market making’,

Available at SSRN 3805750 .

15

6 Declarations

6.1 Availability of data and material

All code and data used in this paper are freely available from the author upon request.

6.2 Competing interests

The author declares that he has no competing interests.

6.3 Funding

All funding for this paper came from research grants from Brigham Young University.

6.4 Author’s contributions

The author is solely responsible for the content of this paper.

6.5 Acknowledgements

The author would like to thank the participants of the BYU Economics Department seminar

for helpful comments on this paper.

16

	Introduction
	Literature

	General automated market making pricing functions
	Constant elasticity pricing functions
	Arbitrage-free pricing
	Configurable liquidity

	Simultaneous matching of oracle prices and oracle slippage
	Conclusion
	Declarations
	Availability of data and material
	Competing interests
	Funding
	Author's contributions
	Acknowledgements

