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Abstract—High-Frequency Trading (HFT) algorithms are
automated feedback systems that interact with markets to
maximize investment returns. These systems can process varying
resolutions of market information at any given time, with
Level I information providing basic equity data—primarily its
price—and Level II information offering the complete order
book for that equity at a specific moment. This paper presents
a study on the application of Recurrent Neural Network (RNN)
models to predict the spread of the DOW Industrial 30 index
traded on NASDAQ, using both Level I and Level II data as
inputs.

The results suggest that the use of raw Level II data, without
preprocessing, does not enhance spread prediction. This finding
implies that HFT algorithms should not directly utilize raw
Level II information; instead, computational resources should
be allocated towards transforming Level II data into a less noisy
signal if it is to improve trading performance. Alternatively,
when computational resources are limited, HFT algorithms may
benefit from omitting Level II data.

Index Terms—High Frequency Trading, Data Informativity,
Recurrent Neural Network, Spread Prediction, Limit Order
Book

I. RELATED WORKS AND INTRODUCTION

In the past, equities markets were handled by humans
on exchange floors who would take and fulfill orders. With
the transition to digital systems, a new regime of trading
emerged: high-frequency trading (HFT). HFT uses low-
latency algorithms to profit from market states that are
ephemeral to non-HFT trading strategies. The NASDAQ
estimates that 50% of stock trading volume in the United
States is driven by HFT [1]. A new form of arbitrage, called
latency arbitrage, emerged during this time. This form of
arbitrage occurs when there is a latency between exchanges
of a price change. For example, if the price of an S&P 500
future contract changes significantly in Chicago, this triggers
a race around the world to capture stale quotes of assets
highly correlated with the S&P 500. At the turn of the 21st
century, these races were measured in milliseconds, but are
now measured in microseconds and nanoseconds [2].

As HFT has become prominent in markets, many HFT
trading strategies have been developed including spread
capturing, market-neutral arbitrage, short-term momentum
strategies, and cross-market arbitrage [3]. Much work has
been done on the effect of HFT in markets. A review of

Fig. 1. Automated trading algorithms use information about the order book
for each equity to make decisions about new orders to place; well-placed
orders result in profitable executions. Nevertheless, two resolutions of order
book information are available. Level II information is the full book, while
Level I information is a minimal subset essentially just describing the current
price of the equity. While it may seem intuitive that more information would
be better for making investment decisions, the results of this study suggest
that Level II information is no more informative than Level I information
when the trading algorithm is making trades faster than 100 milliseconds
and may decrease model performance if not preprocessed strategically.

approximately 100 papers on the role of HFT in markets is
provided in [4], including the effect of HFT on volatility,
transaction costs, liquidity provision and consumption, price
discovery, flash crashes, and profitability. HFT has also been
studied extensively through a control-theoretic perspective
(see Figure 1). Work in this area includes optimal selling
rules investigated in [5], optimal pair trading is studied in
[6] and [7], and a transaction-level price model is tested in
[8].

In finance, Artificial Neural Networks (ANNs) have been
used for various applications including estimating important
financial theoretic concepts such as estimating the structure
of the stochastic discount factor [9] and detecting statistical
arbitrage [10]. Outside of the field of financial theory, deep
reinforcement learning applications in automatic stock trad-
ing algorithms are also a prominent research topic [11] [12].

While HFT has been investigated by control theorists and
ANNs have been utilized in financial theory and automated
trading algorithms, little has been done with ANNs in mea-



suring the the informativity of HFT data. Here we compare
the performance of recurrent neural network (RNN) models
trained on Level I order book data to models trained on
Level II order book data in predicting the bid-ask spread
for DOW stocks traded on the NASDAQ. We use messaging
data provided by the NASDAQ to reconstruct the order
book and compare how these models perform when used
to predict spread at varying distances into the future (from 1
millisecond to 10 seconds). This provides a characterization
of how informative Level II information is, relative to Level
I information, for predicting the bid-ask spread at different
moments in the future.

II. STOCK EXCHANGE DATA

Stocks and other assets such as cryptocurrencies are bought
and sold on exchanges. Two of the most popular U.S. equities
exchanges include the world’s first electronic exchange, the
National Association of Securities Dealers Automated Quo-
tations (NASDAQ), as well as the New York Stock Exchange
(NYSE). A popular cryptocurrency exchange is provided by
Coinbase and was originally launched as the Global Digital
Asset Exchange (GDAX) but was renamed to Coinbase Pro.

Exchanges act as brokers for exchanging assets between
many clients, including individual and institutional investors.
On these exchanges, trades are done electronically and re-
quire interested participants to send electronic messages to
the exchange. The exchange processes these messages and
matches buyers and sellers using a matching engine. Sellers
and buyers subscribe to output channels provided by the
exchange to know the state of the market and their orders.
Information received through these channels are referred to
as messages. There are various types of messages that can
be sent to exchanges and propagated to all interested parties.
There are core operations that, while their representation may
vary exchange to exchange, are fundamental to exchanges
which we call: bid, ask, buy, and sell.

A. Messaging Data

While there are many forms of financial data that investors
use to inform their trades, such as historical price and
volume data, these data are ultimately the result of aggregated
messaging data. For example, price can be considered the
average of the highest bid and lowest ask while trading
volume is the total value of all sells and purchases. Thus,
messaging data is the most granular form of exchange data
available to an investor.

An example of what some messaging data that may look
like on an exchange is provided in Table I, where rows
represent message data. Here, the first message represents
a request to sell 100 shares of Google stock at $450. Since
this is a request for selling, this order will go on the ask side
of the order book (see II-B). Because this order is added to
the book instead of consuming orders that are already on it,
this is a liquidity providing event or market making order.
As this is an ask instead of a sell this order is not fulfilled
right away. This seller must wait for an interested buyer.

The second message in the table represents a buy request
for 133 shares of Yahoo stock. This execution request is
on the ask side of the book and will be filled immediately
by the exchange’s matching engine. Not all these purchases
will necessarily occur at the same price. The exchange will
provide the investor with the lowest priced 133 shares of
Yahoo stock. This removes orders on the book, so these types
of orders are referred to as liquidity taking events or market
taking orders.

The final row in the table represents a message from a
seller that is willing to purchase 520 shares of Exxon Mobil
stock at $112. This type of order is referred to as a bid and
is the buy side analog of an ask. It is a liquidity providing
event that will begin to be fulfilled once $112 is the best
price offered to sellers.

TABLE I
LEVEL I DATA EXAMPLE

Type Time Order ID Side Price Shares Ticker
A 6505 38776 S 450 100 GOOG
E 7574 0 S - 133 Y
B 8120 57914 B 112 520 XOM

B. The Limit Order Book (LOB)

The limit order book (LOB) is a collection of all unfulfilled
bid and ask messages at a particular point in time. It can be
determined by aggregating all the messaging data for the day
up to the point in time for which the book is desired. A simple
order book at a specific moment in time is shown in Figure
2. A representation of the Order Book throughout an entire
day is shown in Figure 3.

Important features of the book include the highest bid,
lowest ask, and the spread (the difference between the lowest
ask and highest bid). The spread is also an important feature
for traders because it indicates how much value can be
captured by being a liquidity provider. In our simple order
book, if a trader were to put a single share for purchase at
$4 and request to purchase a single share at $6 and have
both orders fulfilled, then the traders position on net would
be unchanged but the value in the trader’s account would
increase by $2.

Level I quote data consists of the highest bid and lowest
ask prices, as well as the depth (size) of the bid and ask.
Table II provides an example of Level I data.

TABLE II
LEVEL I DATA EXAMPLE

Time Bid Ask B0 A0
103,561 15 16 10 15
103,565 15 16 5 15
105,123 15 17 5 25

At time 103,561 the bid is at $0.15 with a depth of 10
shares and the ask is at 16 cents with a depth of 15 shares.
After 4 units of time elapsed, 5 shares were either sold at



Fig. 2. Cross-Sectional Order Book Visualization. The red bars represent
unfulfilled bids while the blue bars represent unfulfilled asks. Because the
difference between the highest price a market maker is willing to pay is $4
and the lowest price a market maker is willing to pay is $6, the spread is
said to be $2. On the NASDAQ, the smallest the spread of a security can be
is $0.01. In economic theory, when the spread is not the smallest possible
value there is market uncertainty about what the price of the asset should
be. This is intuitive because one would expect to be able to buy a good and
instantaneously resell it for the same price.

Fig. 3. Time Series Order Book Visualization. The red line represents the
bid, the green line represents the ask, and the shades of blue represent the
depths at various prices.

$0.15 or 5 shares being offered at $0.15 were cancelled. Some
time later, 15 shares were either canceled from being sold at
$0.16 or at least 15 shares were purchased. Assuming this
event was a market order, with this data we do not know if
that execution walked the book because we don’t have access
to the depth of the book at $0.17 prior to the execution.

Level II quote data is a superset of Level I data. In addition
to Level I data, it includes depths and prices of the next 10
best bid and offer prices. Table III illustrates the difference
between Level I and Level II information. For clarity, we
only include the depth at $0.01 below the current bid and
$0.01 above the current ask.

This pseudo Level II trader has more information than the
Level I trader. Like the Level I trader, she sees at 103,565
that 5 bids at $0.15 were either cancelled or filled. Unlike
the Level I trader, she sees a 3 unit increase in demand
for the stock at time 104,372 at $0.14. Furthermore, she
knows that the price moving event at 105,123 was caused
by a market order that walked the book. In particular, this

TABLE III
PSEUDO LEVEL II DATA EXAMPLE

Time Bid Ask B0 A0 B1 A1
103,561 15 16 10 15 17 28
103,565 15 16 5 15 17 28
104,372 15 16 5 15 20 28
105,123 15 17 5 25 20 30

execution consumed all the available stocks at $0.16 and 3
of stocks available at $0.17. A trader with access to Level
II data has more information over the same interval of time
compared to a trader who only has access to Level I data.

III. EXPERIMENTAL DESIGN

A. Objective

The goal of our study is to quantify the statistical power
gained by predicting the spread of a security some time
in the future when using Level II data instead of Level I
data. This problem is, at its core, an identification problem.
A randomized control trial (RCT) is the gold standard to
identify the causal effect of a treatment [13]. We use the
principles behind an RCT to conduct a paired experiment.
In this experiment we keep as many factors as possible
consistent while training a pair of comparable model on Level
I and Level II data from the Nasdaq. We decided to use
the Dow Jones Industrial Average (DJIA), stocks that form
a broad-based index [14], because it is untenable to train
models for all stocks on all trading days.

Sampling involved randomly selecting three contiguous
trading days from the DJIA across the 2018 calendar year.
The stocks that were in the DJIA in 2018 are in Table
IV. Note that in 2018 General Electric was replaced by
Walgreens Boots Alliance. We include both in our dataset.

B. Problem Formulation

Given some security, let s be the spread, and X1 and X2

denote Level I and Level II data, respectively, over some fixed
time interval. Our goal is to approximate function f(X) in
Equation 1.

st+∆ = f(Xt) + ϵt (1)

Delta (∆) is a fixed amount of time in the future and ϵt is
noise in the signal. Figure 4 provides a visualization for this
problem.

A metric is needed to determine how well the function
f(Xt) approximates st+∆. A standard metric for model
performance is mean squared error (MSE) given in equation
2, where f̂(·) is an approximation of f(Xt).

MSE =

N∑
i=1

(st+∆ − f̂(Xt))
2/N (2)

It is conceivable that the distribution of ϵ for each stock
could differ significantly based on volatility of the stock’s
spread. To normalize the performance of the models, we use



TABLE IV
STOCKS IN THE DOW JONES INDUSTRIAL AVERAGE (DJIA) IN 2018.

Company Ticker
3M MMM

American Express AXP
Apple AAPL
Boeing BA

Caterpillar CAT
Cisco Systems CSCO

Chevron CVX
Coca-Cola KO

DowDuPont DWDP
Exxon Mobil XOM

General Electric GE
Goldman Sachs GS

Home Depot HD
IBM IBM
Intel INTC

Johnson & Johnson JNJ
JPMorgan Chase JPM

McDonald’s MCD
Merck MRK

Microsoft MSFT
Nike NKE
Pfizer PFE

Procter & Gamble PG
Travelers TRV

United Technologies UTX
UnitedHealth Group UNH

Verizon Communications VZ
Visa V

Walgreens Boots Alliance WBA
Walmart WMT

Walt Disney DIS

Fig. 4. Objective function visualization. In this figure 14:30 is when the
last known message was received and the purple line is the point at which
we’re predicting the spread.

R-squared as our normalized comparison metric. The formula
for R-squared is given in equation 3.

R2 = 1−

∑N
i=1

(
st+∆,i − f̂(Xt,i)

)2

∑N
i=1 (st+∆,i − s̄t+∆,i)

2
(3)

The usefulness of Level I and Level II data may be
associated with a time component. For this reason, we train
Level I and Level II models for varying deltas. In particular,

we do this for deltas set at 1 millisecond, 10 milliseconds,
100 millisecond, 1 second, and 10 seconds.

C. Comparable Design Matrices

In order to generate comparable f̂ models, the design
matrices X1 and X2 must be comparable. Consider again
Tables II and III. These tables cover the same time period;
however, the pseudo Level II table (Table III) has one more
entry than the Level I table (Table III). If we restricted both
tables to consist of the most recent 3 rows, then the input to
the Level I model would span a greater time period than the
input to the Level II model. The Level I design matrix would
include data back to time 103,561 while the Level II design
matrix would only include data back to time 103,565.

This example reveals a fundamental tradeoff in construct-
ing comparable design matrices containing Level I or Level
II data. If the design matrices represent the same number of
events, then the Level II design matrix may be shorter than
the Level I design matrix. On the other hand, if the design
matrix is constructed to account for a fixed interval of time,
then the Level II design matrix may have more rows than the
Level I matrix.

Orders closer to the bid and ask prices are more likely
to execute than orders further away from the bid and ask
prices. Since orders close to the bid and the ask are more
likely to execute, it is reasonable to assume that traders who
place these orders are more likely to be sincere about their
desire to buy or sell the asset at the given price. Conversely,
orders further away from the bid and the ask are less likely
to execute. This presents malicious traders the opportunity to
attempt to manipulate the stock’s price by placing insincere
orders in hopes of sending false signals of demand to other
traders and their algorithms. As Level I data only consists of
orders that are close to the bid and the ask, these data are
less likely to be manipulated than the orders further from the
bid and the ask contained in Level II data. Thus, Level II
data is more susceptible to noisy signals sent by bad actors
than Level I data. If the design matrices for Level I and
Level II data are required to be the same length (have the
same number of rows), then the Level II model, with its
design matrix that does not contain information as far into
the past, would be unable to compete with the Level I model
even if Level II data does provide more information. This
reasoning forms the basis for why we chose to use a fixed
time interval in constructing design matrices for Level I and
Level II models instead requiring the same number of rows.

As messaging data occurs frequently, we construct a design
matrix that spans 30 seconds from the time of prediction.
To illustrate, assume that the current time for the model is
1:52:05pm, then all messages that changed Level I data from
1:51:35pm to 1:52:05pm would be included in the design
matrix. If the delta for this model was 1 second, then the
model would be predicting the spread at 1:51:36pm. When
sampling the training data, we did not sample random times
of the day. Instead, we randomly sampled an event from
the day and used that timestamp to construct the design



matrix and target spread. We sampled in this way due to
the assumption that more HFT traders feed new data into
their models upon arrival instead of running their models at
fixed time intervals. In other words, we assume event driven
trading.

D. Comparable Model Architectures

Core to generating comparable performance metrics for
Level I and Level II data is the architecture of the model
used to approximate f(·). Given that X1 and X2 may differ
in length, this imposes a restriction on what the input layer
to the model may be. Specifically, as the sequence length can
differ dramatically between samples, we chose a model that
is agnostic to number of rows in the input matrix. We place
a feedforward network at the head of the model to transform
X1 and X2 to have the same number of columns so that the
architectures of the models can be identical after this point.
A detailed description of the model architecture is provided
in Figure 5.

This approach is not without possible errors. Suppose there
is more signal in Y2 than in Y1, but that the hidden and output
layers are the same dimensionality. If the model is saturated
by the signal in Y1 and incapable of learning more, than the
model fit on Y2 may be able to achieve higher performance
than the first model. Now assume that the model is not fully
saturated after fitting on Y1, then this model has potential to
overfit on Y1, hindering the model’s performance.

Fig. 5. Model Architecture Flowchart

E. Train, Validation, and Test Set Construction

The dataset used in this study consists of all messaging
data on the NASDAQ exchange of all stocks that were part
of the DJIA in 2018 (listed in Table IV). In 2018, there were
248 full trading days.

To construct the train, validation, and test sets, we used
contiguous sets of three days. We required three contiguous
training days to increase the amount of training data available
to each model. These days had to be contiguous to combat

non-stationarity in the data. We assumed that high frequency
traders likely refit their models on non-trading days, so using
contiguous days helps guard against this non-stationarity.
After imposing these constraints, there were 91 unique sets
of contiguous training days in 2018.

For each stock we assigned a delta. We then randomly
selected one of these unique sets of three days. For each of
the three days, we excluded the first and last hour of the
trading day as these hours are more subject to anomalous
behavior. We then divided the data into four equal sized
sets. Two of these partitions were randomly assigned to
be incorporated into the training set, one of the remaining
partitions was assigned to the validation set and the final
partition was allocated to the test set. For each of these setups,
we trained a Level I model and a Level II model. We refer
to the stock, with its train, validation, test sets, model type,
and delta, as an experiment.

We repeated this process twice for replication and averaged
their results. This guards against inflated statistical power that
comes from duplicate data. In all, we had 5 different deltas,
31 stocks, 2 models, and a replication factor of 2 for a total
of 620 experiments.

F. Convergence Criteria and Test Model Selection

Convergence criteria is important because it determines
how much learning a model can do as well as how much
overfitting may occur. This is especially critical in our
objective of generating two models where the only difference
between them is the use of Level I or Level II data.

The training set is used to tune the models parameters, the
validation set is used to determine if overfitting has occurred,
and the test set is used to generate the model’s performance.
The convergence criteria is defined by the following rules:

1) A variable we call patience is set to 4.
2) After an epoch of training, the model’s performance is

gauged by calculating the MSE on the validation set.
3) If the observed MSE is the lowest MSE seen so far,

the patience variable is reset to 4. Else, patience is
decreased by 1.

4) If patience has dropped twice, without model improve-
ment, the learning rate is reduced by 90%.

5) Steps 2-4 are repeated until patience reaches 0.

To guard against testing on an overfit model, the model
with the lowest validation MSE is evaluated on the test set.

After gathering the R-squared values for all our models
and averaging the replicated results, we ran a simple cross-
sectional regression of R-squared on our IsLevel2 dummy
variable from Section III-B.

IV. RESULTS

The coefficient recovered on IsLevel2 is negative for each
cross-sectional regression, as seen in Table V. However, the
effect does not become statistically significant until 1000 ms
(1 second) is reached. Surprisingly, Level II data provides



the largest and most statistically significant decline in per-
formance compared to Level I data 10 seconds from the last
observed change to the book.

A visualization of the experiment results and statistics of
interest is shown in Figure 6.

TABLE V
R-SQUARED REGRESSION RESULTS

Delta (ms) 1 10 100 1000 10000
Intercept 0.0947 .0087 0.0443 0.0124 -0.0305

(0.000) (0.000) (0.002) (0.235) (0.014)
IsLevel2 -0.0150 -0.0272 -0.0182 -0.0438 -0.0410

(0.583) (0.187) (0.360) (0.004) (0.019)

Fig. 6. Level 1 data consistently performs better than level 2 data and
the gap in performance gradually widens as delta increases. Models that
incorporate level 2 data must do so strategically as a naive incorporation of
this data can decrease model performance.

V. CONCLUSION

This suggests that while Level II data is a superset of Level
I data, more extensive preprocessing must be undertaken than
was conducted in this study if it is to enhance predictive
performance. The results of our research indicate that using
richer information sets to train a Recurrent Neural Network
(RNN) does not necessarily guarantee improved model per-
formance. In comparison to Level I data, employing Level
II data in an RNN architecture offers no additional benefit
in predicting the spread in a High-Frequency Trading (HFT)
environment.

In this study, we examined the value of Level II stock
data relative to Level I stock data. Our findings suggest that
Level II data may not offer added predictive power over Level
I data. While these effects are not statistically significant in
the ultra-short term (less than 100 milliseconds), over more
extended predictive periods (longer than 1 second), Level II
data hampers predictive power for forecasting the bid-ask
spread, when provided in the manner described in this paper.

This observation implies that in high-speed trading envi-
ronments, where latency sensitivity and computational re-
source limitations are factors, HFT algorithms could benefit

from excluding Level II data. Alternatively, additional pre-
processing may be necessary to transform Level II data into a
format that yields favorable trading outcomes using an RNN.

High-frequency traders might achieve more success by
relying on messaging data at the bid and ask prices. In
contrast, lower-frequency traders may want to undertake
more preprocessing than was performed in this study if the
book shape is to be incorporated into an HFT model.

While this study focused on characterizing the informativ-
ity of Level II book data for predicting the spread at various
future moments, utilizing this information in an automated
algorithm would also require forecasting the midpoint of the
spread. We envision future work to conduct a similar study,
aimed at characterizing the informativity of Level II book
data for predicting the midpoint of the bid-ask spread at var-
ious future moments. This would complete the effort required
to design effective automated trading algorithms. Potential
data smoothing operations, such as exponentially weighted
averages and simple averages, could also be examined to
determine how these transformations might enhance signal
extraction from the data.
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